92

Mole Tunnel Stoichiometry

Name .	
Date _	Period

CLASSWORK

Purpose

To practice performing stoichiometric calculations.

Part I: Root Canal

I. Calcium hydroxide is sometimes used in dentistry to temporarily fill the space left by a root canal. The equation for the formation of calcium hydroxide is this:

 $CaCl_2(aq) + 2NaOH(aq) \longrightarrow Ca(OH)_2(s) + 2NaCl(aq)$ Calcium chloride Sodium hydroxide Calcium hydroxide Sodium chloride Calculate the molar mass of each substance and fill in the table.

	Reactant		Product	
	CaCl ₂	NaOH	Ca(OH) ₂	NaCl
Molar mass				

Imagine that a dentist performs this reaction four times using different amounts of the reactants. Figure out the amounts of each compound.

Reaction	Quantity	CaCl ₂ (aq)	NaOH(aq)	Ca(OH) ₂ (s)	NaCl(aq)
1	moles	1.00 mol	2.00 mol	1.00 mol	2.00 mol
	grams	111.0 g	80.0 g	74.1 g	117.0 g
2	moles			0.500 mol	
	grams	55.5 g		37.0 g	58.5 g
3	moles		0.200 mol	0.100 mol	
	grams				
4	moles				
	grams			10.0 g	

- **2.** How many moles of Ca(OH)₂ are formed for every mole of NaOH used?
- **3.** For every 0.50 mol of Ca(OH)₂ formed, how many moles of NaCl are formed?
- **4.** Why isn't the number of grams of CaCl₂ identical to that of Ca(OH)₂?
- **5.** How many grams of calcium chloride do you need to make 20.0 g of calcium hydroxide?

Part 2: Human Bones

I. The chemical equation for the reaction that forms calcium phosphate, the main ingredient in bones, is this:

$$3\text{CaCl}_2(aq) + 2\text{Na}_3\text{PO}_4(aq) \longrightarrow \text{Ca}_3(\text{PO}_4)_2(s) + 6\text{NaCl}(aq)$$

Calcium chloride Sodium phosphate Calcium phosphate Sodium chloride Calculate the molar mass of each substance and fill in the table.

	Reactant		Product	
	CaCl ₂	Na ₃ PO ₄	Ca ₃ (PO ₄) ₂	NaCl
Molar mass				

Imagine that this reaction is repeated three times in the laboratory using different amounts of reactants. Complete the table.

Reaction	Quantity	CaCl ₂ (aq)	Na ₃ PO ₄ (aq)	$Ca_3(PO_4)_2(s)$	NaCl(aq)
1	moles	3.00 mol	2.00 mol	1.00 mol	6.00 mol
	grams	333 g	328 g	310 g	351 g
2	moles			2.00 mol	
	grams	666 g		620 g	702 g
3	moles				
	grams			9.92 g	

- 2. For every mole of Na₃PO₄ used, how many moles of Ca₃(PO₄)₂ are formed?
- **3.** For every 0.500 mol of $Ca_3(PO_4)_2$ formed, how many moles of $CaCl_2$ are used?
- **4.** How many grams of calcium chloride do you need to make 20.0 g of human bone (calcium phosphate)?
- **5. Making Sense** Outline the steps you took to calculate the number of grams of calcium chloride needed to make 20.0 g of calcium phosphate.
- **6. If You Finish Early** How many moles of product would you make if you added 10.0 g of CaCl_2 to 10.0 g of NaOH?