Lesson Mole Tunnel Stoichiometry

\qquad
Date \qquad Period \qquad

Purpose

To practice performing stoichiometric calculations.

Part I: Root Canal

I. Calcium hydroxide is sometimes used in dentistry to temporarily fill the space left by a root canal. The equation for the formation of calcium hydroxide is this:

$$
\mathrm{CaCl}_{2}(a q)+2 \mathrm{NaOH}(a q) \longrightarrow \mathrm{Ca}(\mathrm{OH})_{2}(s)+2 \mathrm{NaCl}(a q)
$$

Calcium chloride Sodium hydroxide Calcium hydroxide Sodium chloride Calculate the molar mass of each substance and fill in the table.

	Reactant		Product	
	CaCl_{2}	NaOH	$\mathrm{Ca}(\mathrm{OH})_{2}$	NaCl
Molar mass				

Imagine that a dentist performs this reaction four times using different amounts of the reactants. Figure out the amounts of each compound.

Reaction	Quantity	$\mathrm{CaCl}_{2}(\mathrm{aq})$	$\mathrm{NaOH}(\mathrm{aq})$	$\mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{~s})$	$\mathrm{NaCl}(\mathrm{aq})$
1	moles	1.00 mol	2.00 mol	1.00 mol	2.00 mol
	grams	111.0 g	80.0 g	74.1 g	117.0 g
2	moles			0.500 mol	
	grams	55.5 g		37.0 g	58.5 g
3	moles		0.200 mol	0.100 mol	
	grams				
4	moles				
	grams			10.0 g	

2. How many moles of $\mathrm{Ca}(\mathrm{OH})_{2}$ are formed for every mole of NaOH used?
3. For every 0.50 mol of $\mathrm{Ca}(\mathrm{OH})_{2}$ formed, how many moles of NaCl are formed?
4. Why isn't the number of grams of CaCl_{2} identical to that of $\mathrm{Ca}(\mathrm{OH})_{2}$?
5. How many grams of calcium chloride do you need to make 20.0 g of calcium hydroxide?

Part 2: Human Bones

I. The chemical equation for the reaction that forms calcium phosphate, the main ingredient in bones, is this:
$3 \mathrm{CaCl}_{2}(a q)+2 \mathrm{Na}_{3} \mathrm{PO}_{4}(a q) \longrightarrow \mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}(s)+6 \mathrm{NaCl}(a q)$
Calcium chloride Sodium phosphate Calcium phosphate Sodium chloride
Calculate the molar mass of each substance and fill in the table.

	Reactant		Product	
	CaCl_{2}	$\mathrm{Na}_{3} \mathrm{PO}_{4}$	$\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$	NaCl
Molar mass				

Imagine that this reaction is repeated three times in the laboratory using different amounts of reactants. Complete the table.

Reaction	Quantity	$\mathrm{CaCl}_{2}(\mathrm{aq})$	$\mathrm{Na}_{3} \mathrm{PO}_{4}(\mathrm{aq})$	$\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}(\mathrm{~s})$	$\mathrm{NaCl}(\mathrm{aq})$
1	moles	3.00 mol	2.00 mol	1.00 mol	6.00 mol
	grams	333 g	328 g	310 g	351 g
2	moles			2.00 mol	
	grams	666 g		620 g	702 g
3	moles				
	grams			9.92 g	

2. For every mole of $\mathrm{Na}_{3} \mathrm{PO}_{4}$ used, how many moles of $\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$ are formed?
3. For every 0.500 mol of $\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$ formed, how many moles of CaCl_{2} are used?
4. How many grams of calcium chloride do you need to make 20.0 g of human bone (calcium phosphate)?
5. Making Sense Outline the steps you took to calculate the number of grams of calcium chloride needed to make 20.0 g of calcium phosphate.
6. If You Finish Early How many moles of product would you make if you added 10.0 g of CaCl_{2} to 10.0 g of NaOH ?
