76 Billions and Billions Avogadro's Number

Name	
Date	Period

CLASSWORK

Purpose

To find the relationship between mass and number of atoms.

Analysis

- 1. The table on the next page shows the mass of different numbers of atoms of zinc, aluminum, and iron. Complete the table.
- **2.** What is scientific notation?
- 3. Why do you think scientists use scientific notation?
- 4. What are two ways of writing the smallest number in the table? What does it represent?
- 5. What are two ways of writing the largest number in the table? What does it represent?
- **6.** Which has the most mass, 1 trillion atoms of zinc, 100 trillion atoms of iron, or 500 trillion atoms of aluminum? Explain how you can tell.
- **7.** How many zinc atoms are there in 65.4 g?
- **8.** Some of the numbers in scientific notation have a negative exponent, and some have a positive exponent. Explain the difference between these two types of numbers.
- 9. What do 65.4 g of zinc, 27.0 g of aluminum, and 55.8 g of iron have in common?
- **10.** What name do chemists give to a collection of 602 sextillion objects?

nt Number of atoms Scien	Numb scien	imb	er of atoms in tific notation	Mass (g)	Mass in scientific notation
red 100			$1.0 imes 10^2$	0.0000000000000000000011 g	$1.1 imes10^{-20}\mathrm{g}$
red 100,000 nd			$1.0 imes 10^5$	0.000000000000000011 g	$1.1 imes 10^{-17} \mathrm{g}$
on 1,000,000,000					$1.1 imes 10^{-10} \mathrm{g}$
on 602,000,000,000,000,000,000	00			65.4 g	$6.54 imes 10^1 { m g}$
on 1,000,000				0.00000000000000045 g	$4.5 imes10^{-17}{ m g}$
ion 500,000,000,000				0.00000022 g	
ion			$1.0 imes 10^{18}$		$4.5 imes 10^{-6}$ g
on			$6.02 imes 10^{23}$	27.0 g	$2.70 imes 10^1 \mathrm{g}$
пс 1,000,000,000				0.0000000000003 g	
ion 100,000,000,000				0.000000003 g	$9.3 \times 10^{-9} \mathrm{g}$
on					$5.58 imes 10^{1} \mathrm{g}$
l on				111.6 g	

Unit 4 Toxins Lesson 76 Worksheet Living By Chemistry 2e Teacher's Resource Materials © 2015 W.H. Freeman and Company/BFW