Lesson What's Your Reaction?
 73 Types of Reactions

Name \qquad

Purpose

To find patterns in the types of chemical equations and to classify a reaction by type.

Materials

- Toxic Reactions cards

Part I: Sorting Chemical Equations

Use the Toxic Reactions cards from Lesson 1: Toxic Reactions. Sort the cards according to the directions for Questions 1 through 4, then answer the questions.
I. Find all the cards that have only one product formed in the reaction. List the letters on the cards.
a. Describe how the atoms rearrange in these reactions.
b. Why do you think these reactions are called combination reactions?
2. Find all the cards that have a reactant that is an elemental metal. List the letters on the cards.
a. Describe how the atoms rearrange in these reactions.
b. Why do you think these reactions are called single exchange reactions?
3. Consider all the cards that have a reactant that is an ionic compound. List the letters on the cards.
a. Describe how the atoms rearrange in these reactions.
b. Why do you think these reactions are called double exchange reactions?
4. Examine all the remaining cards.
a. Verify that these reactions involve reactants that are molecules. List the letters on the cards.
b. Describe how the atoms rearrange in these reactions.
c. Classify these reactions to the best of your ability.
5. $2 \mathrm{H}_{2} \mathrm{O}_{2}(l) \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}(l)+\mathrm{O}_{2}(g)$

Why do you think this reaction is called a decomposition reaction?

Part 2: Classifying Reactions

I. Classify each reaction as combination, decomposition, single exchange, or double exchange.
a. Fill in any missing reactants or products.
b. Balance the equation if necessary.

Reaction	Type
$\mathrm{N}_{2}(g)+\quad \mathrm{H}_{2}(g) \longrightarrow 2 \mathrm{NH}_{3}(g)$	
$\mathrm{C}_{2} \mathrm{H}_{4}(g)+\mathrm{H}_{2}(g) \longrightarrow$	
$\mathrm{CaCO}_{3}(s) \longrightarrow \mathrm{CaO}(s)+\mathrm{CO}_{2}(g)$	
$\mathrm{Cl}_{2}(g)+\quad \mathrm{CaI}_{2}(s) \longrightarrow \mathrm{I}_{2}(s)+$	
$\mathrm{NaOH}(a q)+\mathrm{HCl}^{2}(a q) \longrightarrow \mathrm{H}_{2} \mathrm{O}(l)+$	
$2 \mathrm{KClO}_{3}(s) \longrightarrow 2 \mathrm{KCl}(s)+3 \mathrm{O}_{2}(g)$	
$\mathrm{Mg}(s)+2 \mathrm{HCl}(a q) \longrightarrow \mathrm{H}_{2}(g)+$	
$\mathrm{KgCl}(a q) \longrightarrow \mathrm{AgCl}(s)+$	

2. List six molecules in the reactions in the table.
3. List six ionic compounds in the reactions in the table.
4. Making Sense You can remove the toxin carbon monoxide, $\mathrm{CO}(\mathrm{g})$, from the air through a reaction with oxygen, O_{2}, to produce carbon dioxide, $\mathrm{CO}_{2}(\mathrm{~g})$. Write a balanced chemical equation for this combination reaction.
