

STP

Name	
Data	D:- J
Date	Period

The Mole and Avogadro's Law

Purpose

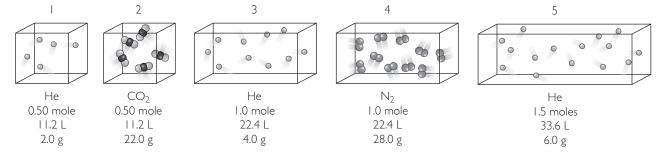
To explore further the relationship between gas pressure and the number of gas particles in a sample.

Part I: STP

Four samples of air have been collected at each of three different locations. Each air sample is in a different-size box. Assume that the temperature is 273 K at all three locations.

1. Fill in the missing amounts of moles of gas molecules for each box.

Volume (L)	Boxes filled at sea level P = 1 atm	Boxes filled on Mt. Denali P = 0.5 atm	Boxes filled outside airplane in flight P = 0.25 atm
11.2 L	0.500 mole	0.250 mole	
22.4 L	1.00 mole	0.500 mole	0.250 mole
33.6 L	1.50 moles		
44.8 L			


2. Describe at least three patterns that you notice in the data.

- **3.** Analyze the data at sea level.
 - **a.** What is the number density, n/V, in moles of gas molecules per liter of gas in the 22.4 L box at sea level?
 - **b.** What is the number density of the gas in all four air samples at sea level?
- **4.** What is the number density for each location?
- **5.** Explain why the pressure is higher at sea level than on Mt. Denali.

6. How many moles of gas would be in a 25.0 L box at sea level?

Part 2: Number and Mass

Consider samples of different gases. For each sample T = 273 K and P = 1 atm. (*Note:* The drawings simply represent the number of gas particles in correct proportion to one another.)

- **I.** In the boxes showing helium gas, how many moles does each sphere represent?
- **2.** Which box(es) has/have the most gas particles?
- **3.** Which box(es) has/have the most total atoms?
- **4.** There are twice as many total atoms in box 4 as in box 3, yet both boxes are at the same pressure. Explain why.
- **5.** The masses of boxes 3 and 4 are different. Explain why.
- **6.** Describe or sketch a box containing 8.0 g of He atoms at 1 atm pressure. Show the relative number of He atoms and the size of this box compared to the size of the boxes in the table.
- **7. Making Sense** If you know that two gas samples are at the same temperature, what do you need to know in order to determine which gas is at a greater pressure?
- **8. If You Finish Early** Consult the illustrations in Part 2. At a temperature of 273 K and a pressure of 1 atm, what volume does 1.0 mole of a gas occupy? Does it matter what the gas is? Explain.