LESSON 60

ACTIVITY
\qquad
Date _ Period \qquad Molecular View of Pressure

Purpose

To examine how the motions of gas molecules cause gas pressure.

Part I: Computer Simulations

I. For the first simulation, the volume does not change. Focus on what happens to the gas pressure as the temperature changes.

a. What happens to the pressure when the temperature is increased? Explain why.

b. What happens to the pressure when the temperature is decreased? Explain why.

2. For the second simulation, the temperature does not change. Focus on what happens to the pressure as the volume of the container changes.
a. What happens to the pressure when the volume is decreased? Explain why.

b. What happens to the pressure when the volume is increased? Explain why.
3. What conditions result in more collisions of molecules with the walls of the container and with one another?
4. Name two ways you could reduce the pressure of a gas sample.

Part 2: Gas Law Review

I. Fill in the table. The first line of the table gives the volume, pressure, and temperature for a container of gas. The gas has an initial volume of 22.4 L . The pressure is 1.0 atm ,
and the temperature is 300 K . Each subsequent row represents a new set of conditions for this gas. Fill in the blank spaces.
a.

Volume	Pressure	Temperature	Gas law
$V_{1}=22.4 \mathrm{~L}$	$P_{1}=1.0 \mathrm{~atm}$	$T_{1}=300 \mathrm{~K}$	(initial conditions)
	1.0 atm	150 K	Charles's law
44.8 L	1.0 atm		Charles's law
	1.0 atm	1200 K	

b.

Volume	Pressure	Temperature	Gas law
$V_{1}=22.4 \mathrm{~L}$	$P_{1}=1.0 \mathrm{~atm}$	$T_{1}=300 \mathrm{~K}$	(initial conditions)
	2.0 atm	300 K	
	0.5 atm	300 K	
89.6 L		300 K	

Colume	Pressure	Temperature	Gas law
$V_{1}=22.4 \mathrm{~L}$	$P_{1}=1.0 \mathrm{~atm}$	$T_{1}=300 \mathrm{~K}$	(initial conditions)
22.4 L		150 K	
22.4 L		600 K	
	4.0 atm	1200 K	

2. Making Sense In your own words, explain what gas pressure is and how it can be changed.
