

Molecules in Two Dimensions Structural Formulas

Name .	
Date _	Period

Purpose

To compare the structures of molecules.

Materials

■ vials F–H

Part I: Test Your Predictions

Write your predictions in the table. Then carefully smell vials F, G, and H.

Vial	Chemical name	Molecular formula	Predicted smell	Actual smell
F	ethyl pentanoate	$C_7H_{14}O_2$		
G	butyric acid	$C_4H_8O_2$		
Н	ethyl acetate	$C_4H_8O_2$		

- **I.** What name would you give to the smell category that vial G might belong in?
- **2.** What could account for two molecules with the same molecular formula having different smells?

Part 2: Examine the Structures

Below are structural formulas of each of the three substances. They show how the atoms in each molecule are connected.

Questions

1. List three similarities between molecules G and H.

- 2. List two differences between molecules G and H.
- **3.** List three similarities between the two sweet-smelling molecules.
- **4.** What do you suppose the lines in these drawings represent?
- **5.** From the evidence you have seen so far, how would you explain the differences in smell between molecules G and H?
- **6.** Five more structural formulas are shown here. Write their molecular formulas.

- **7.** Molecules 1, 3, and 5 smell exactly the same. They represent the same molecule. Explain why.
- **8.** Molecules 1, 2, and 4 have different smells. Explain why.
- **9. Making Sense** What evidence is there that the structure of a molecule is related to how it smells?
- **10. If You Finish Early** Draw molecule 4 so that it looks different on paper but still represents the same molecule.