

How Pushy Le Châtelier's Principle

Name	
Date _	Period

Purpose

To explore what happens to a reversible reaction at equilibrium when the conditions are changed.

I. In the table, record your observations of color changes for each step of the

Materials Used in Demo

- 5 large test tubes (~50 mL) with ~40 mL 0.0001 M FeSCN²⁺ (*aq*) in each
- dropper bottle with 0.10 M Fe(NO₃)₃ (*aq*)
- dropper bottle with 0.10 M KSCN (*aq*)
- 250 mL beaker with water warming on a hot plate (about 60 °C)
- 250 mL beaker with crushed ice

Part I: Demonstration

demonstration

demonstration.			
Procedure		Solution color	
1. Add approx. ~40 mL of 0.0001 M FeSCN ²⁺ (<i>aq</i>) to 5 small test tubes.			
2. Test tube #1 is a control for comparison with the other tubes.			
3. Add drops of 0.1 M Fe ³⁺ (aq) to test tube #2 until color changes.			
4. Add drops of 0.1 M SCN ⁻ (aq) to test tube #3 until color changes.			
5. Place tube #4 in a hot-water bath until color changes.			
6. Place test tube #5 in an ice-water bath until color changes.	#5		

Part 2: Changing Concentration

A solution of FeSCN²⁺ (aq) is an equilibrium mixture described by the chemical equation given below.

 $\begin{array}{rcl} \operatorname{FeSCN}^{2+}\left(aq\right) & \Longrightarrow & \operatorname{Fe}^{3+}\left(aq\right) + & \operatorname{SCN}^{-}\left(aq\right) & K = 0.025 \\ & \operatorname{red} & & \operatorname{yellow} \end{array}$

I. Use the chemical equation to explain why the solution in test tube #1 is orange.

- **2.** The color changes after addition of Fe³⁺ (*aq*) in step 2. What does this indicate about the amounts of FeSCN²⁺ (*aq*), Fe³⁺ (*aq*), and SCN⁻ (*aq*) in the equilibrium mixture?
- **3.** The color changes after addition of SCN⁻ (*aq*) in step 3. What does this indicate about the amounts of FeSCN²⁺ (*aq*), Fe³⁺ (*aq*), and SCN⁻ (*aq*) in the equilibrium mixture?

Part 2: Changing Temperature

The dissociation of FeSCN²⁺ (aq) is endothermic. This means that heat is transferred to the solution in the forward process.

Heat + FeSCN²⁺ (aq) \implies Fe³⁺ (aq) + SCN⁻ (aq) : O" red yellow

- **I.** The color changes when the temperature of the equilibrium mixture is changed in step 4. Explain what happens and why?
- **2.** The color changes when the temperature of the equilibrium mixture is changed in step 5. Explain what happens and why.
- **3. Making Sense** Le Châtelier's principle indicates that the equilibrium mixture changes when it is disturbed to reduce the stress.
 - **a.** What happens to the concentration of starting material upon addition of one of the products?
 - **b.** What happens to the concentration of starting material for an endothermic process when heat is transferred to the equilibrium mixture?