LESSON
 121

How Balanced Equilibrium Calculations

Name \qquad
Date \qquad Period \qquad

Period

e電

CLASSWORK

Purpose

To explore how the total acid concentration, the H^{+}and A^{-}concentrations, and the value of K are related to one another.

Part I: Equilibrium Constant Equation

Use the data in the table to answer the questions below. Remember that the brackets, [], indicate concentrations in $\mathrm{mol} / \mathrm{L}$ the equilibrium mixture.

$\#$	Solution	Formula	Solution molarity	[HA]	$\left[\mathbf{H}^{+}\right]$	[A-]	\boldsymbol{K}	$\mathbf{p H}$
\mathbf{I}	Hydrochloric acid	HCl	0.10 M	$\sim 0 \mathrm{M}$	0.10 M	0.10 M	40	1.0
$\mathbf{2}$	Nitric acid	HNO_{3}	0.10 M	$\sim 0 \mathrm{M}$	0.10 M	0.10 M	200	1.0
$\mathbf{3}$	Nitrous acid	HNO_{2}	0.10 M	0.093 M	0.0072 M	0.0072 M	000056	2.1
$\mathbf{4}$	Formic acid	HCOOH^{2}	0.10 M	0.096 M	0.0042 M	0.0042 M	0.00018	2.4
$\mathbf{5}$	Benzoic acid	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}$	0.10 M	0.098 M	0.0024 M	0.0024 M	0.000063	2.6
$\mathbf{6}$	Acetic acid	$\mathrm{CH}_{3} \mathrm{COOH}$	0.10 M	0.099 M	0.0013 M	0.0013 M	0.000018	2.9
$\mathbf{7}$	Hydrogen sulfide	$\mathrm{H}_{2} \mathrm{~S}$	0.10 M	0.10 M	0.00010 M	0.00010 M	1.0×10^{-7}	4.0
$\mathbf{8}$	Hypochlorous acid	HOCl	0.10 M	0.10 M	0.000054 M	0.000054 M	3.0×10^{-8}	4.3

I. Why are the concentrations of cations and ions in each solution equal to one another?
2. Explain why $\left[\mathrm{H}^{+}\right]$is equal to the solution molarity for acids \#1 and \#2.
3. Explain why [HA] is approximately equal to the solution concentration for all acids except for \#1 and \#2.

Part 2: Calculating K for the dissolution a weak acid in water

The equation below relates the equilibrium constant, K, and the concentrations of $\mathrm{HA}, \mathrm{H}^{+}$, and A^{-}in an equilibrium mixture of a weak acid dissolved in water.

$$
\begin{gathered}
\mathrm{HA}(a q) \leftrightharpoons \mathrm{H}^{+}(a q)+\mathrm{A}^{-}(a q) \\
K=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]}
\end{gathered}
$$

$\left[\mathrm{H}^{+}\right]$at equilibrium is known by measuring the pH .
$\left[\mathrm{A}^{-}\right]=\left[\mathrm{H}^{+}\right]$for a weak acid dissolved in water. For every H^{+}ion, there is one A^{-}ion.
[HA] \approx solution molarity. The equilibrium concentration of HA is approximately equal (" \approx ")
I. Use the values given in the table from Part 1 to answer these questions for solution \#5, benzoic acid.
a. Write the chemical equation for the reversible dissociation of benzoic acid, $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}$.
b. What is the value of $\left[\mathrm{H}^{+}\right]$?
c. What is the value of $\left[\mathrm{A}^{-}\right]=\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COO}^{-}\right]$?
d. What is the value of $[\mathrm{HA}]=\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}\right]$?
e. Is $[\mathrm{HA}] \approx$ the solution molarity?
f. Plug these values into the equilibrium constant equation to calculate K.

You can use the solution molarity for [HA].

$$
K=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]}
$$

2. Use the values given in the table from Part I to answer the questions for solution \#8, hypochlorous acid.
a. Write the chemical equation for the reversible dissociation of hypochlorous acid, HOCl .
b. What is the value of $\left[\mathrm{H}^{+}\right]$?
C. What is the value of $\left[\mathrm{A}^{-}\right]=\left[\mathrm{NO}^{2-}\right]$?
d. What is the value of [HA]?
e. Plug these values into the equilibrium constant equation to calculate K.

$$
K=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]}
$$

Part 3: Using K to calculate the $\mathbf{p H}$ value

The equilibrium constant equation can be rearranged to solve for the pH of a weak acid, HA, dissolved in water.

$$
K=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]}
$$

For an acid dissolved in water: $\left[\mathrm{H}^{+}\right]=\left[\mathrm{A}^{-}\right]$

Substitute for [A-]:

$$
K=\frac{\left[\mathrm{H}^{+}\right]^{2}}{[\mathrm{HA}]}
$$

Solve for $\left[\mathrm{H}^{+}\right]$:

$$
\begin{aligned}
{\left[\mathrm{H}^{+}\right]^{2} } & =K[\mathrm{HA}] \\
{\left[\mathrm{H}^{+}\right] } & =\sqrt{\mathrm{K}[\mathrm{HA}]} \\
\mathrm{pH} & =-\log \left[\mathrm{H}^{+}\right]
\end{aligned}
$$

I. Consider 0.010 M acetic acid, $\mathrm{CH}_{3} \mathrm{COOH}$.
a. How do you expect the pH to compare to the value for 0.10 M acetic acid given in the table above?
b. What value for K should you use to calculate the pH of $0.010 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}$?
c. What is the H^{+}concentration in a 0.010 M acetic acid, $\mathrm{CH}_{3} \mathrm{COOH}$, solution? (Hint: use the equation on the previous page to solve for H^{+}.)
d. What is pH ?
2. Making Sense What values are related by the equilibrium constant equation for the dissociation of a weak acid?

