

How Balanced **Equilibrium Calculations**

Name	
Date	Period

Purpose

To explore how the total acid concentration, the H⁺ and A⁻ concentrations, and the value of K are related to one another.

Part 1: Equilibrium Constant Equation

Use the data in the table to answer the questions below. Remember that the brackets, [], indicate concentrations in mol/L the equilibrium mixture.

#	Solution	Formula	Solution molarity	[HA]	[H+]	[A-]	К	рН
ı	Hydrochloric acid	HC1	0.10 M	~0 M	0.10 M	0.10 M	40	1.0
2	Nitric acid	HNO ₃	0.10 M	~0 M	0.10 M	0.10 M	200	1.0
3	Nitrous acid	HNO ₂	0.10 M	0.093 M	0.0072 M	0.0072 M	0 00056	2.1
4	Formic acid	НСООН	0.10 M	0.096 M	0.0042 M	0.0042 M	0.00018	2.4
5	Benzoic acid	C ₆ H ₅ COOH	0.10 M	0.098 M	0.0024 M	0.0024 M	0.000063	2.6
6	Acetic acid	СН₃СООН	0.10 M	0.099 M	0.0013 M	0.0013 M	0.000018	2.9
7	Hydrogen sulfide	H ₂ S	0.10 M	0.10 M	0.00010 M	0.00010 M	1.0×10 ⁻⁷	4.0
8	Hypochlorous acid	HOC1	0.10 M	0.10 M	0.000054M	0.000054M	3.0×10 ⁻⁸	4.3

- 1. Why are the concentrations of cations and ions in each solution equal to one another?
- **2.** Explain why $[H^+]$ is equal to the solution molarity for acids #1 and #2.
- **3.** Explain why [HA] is approximately equal to the solution concentration for all acids except for #1 and #2.

Part 2: Calculating K for the dissolution a weak acid in water

The equation below relates the equilibrium constant, K, and the concentrations of HA, H⁺, and A⁻ in an equilibrium mixture of a weak acid dissolved in water.

$$HA(aq) \Longrightarrow H^{+}(aq) + A^{-}(aq)$$

$$K = \frac{[H^{+}][A^{-}]}{[HA]}$$

[H⁺] at equilibrium is known by measuring the pH.

 $[A^-] = [H^+]$ for a weak acid dissolved in water. For every H^+ ion, there is one A^- ion.

[HA] ≈ solution molarity. The equilibrium concentration of HA is approximately equal ("≈")

- **1.** Use the values given in the table from Part 1 to answer these questions for solution #5, benzoic acid.
 - **a**. Write the chemical equation for the reversible dissociation of benzoic acid, C₆H₅COOH.
 - **b**. What is the value of $[H^+]$?
 - **c.** What is the value of $[A^-] = [C_6H_5COO^-]$?
 - **d**. What is the value of $[HA] = [C_6H_5COOH]$?
 - **e**. Is $[HA] \approx$ the solution molarity?
 - **f.** Plug these values into the equilibrium constant equation to calculate *K*. You can use the solution molarity for [HA].

$$K = \frac{[H^+][A^-]}{[HA]}$$

- **2.** Use the values given in the table from Part I to answer the questions for solution #8, hypochlorous acid.
 - **a**. Write the chemical equation for the reversible dissociation of hypochlorous acid , HOCl.
 - **b**. What is the value of $[H^+]$?
 - **c.** What is the value of $[A^{-}] = [NO^{2^{-}}]$?
 - **d**. What is the value of [HA]?
 - **e.** Plug these values into the equilibrium constant equation to calculate *K*.

$$K = \frac{[H^+][A^-]}{[HA]}$$

Part 3: Using K to calculate the pH value

The equilibrium constant equation can be rearranged to solve for the pH of a weak acid, HA, dissolved in water.

$$K = \frac{[H^+][A^-]}{[HA]}$$

For an acid dissolved in water: $[H^+] = [A^-]$

Substitute for [A-]:

$$K = \frac{[H^+]^2}{[HA]}$$

Solve for $[H^+]$:

$$[H^+]^2 = K[HA]$$

$$[H^+] = \sqrt{K[HA]}$$

$$pH = -log[H^+]$$

- **I.** Consider 0.010 M acetic acid, CH₃COOH.
 - **a**. How do you expect the pH to compare to the value for 0.10 M acetic acid given in the table above?
 - **b**. What value for *K* should you use to calculate the pH of 0.010 M CH₃COOH?
 - **c.** What is the H⁺ concentration in a 0.010 M acetic acid, CH₃COOH, solution? (Hint: use the equation on the previous page to solve for H⁺.)
 - **d**. What is pH?
- **2. Making Sense** What values are related by the equilibrium constant equation for the dissociation of a weak acid?