

# The Active Life Activity of Metals

| Name |        |
|------|--------|
| Date | Period |

#### Purpose

To discover how metals compare in terms of activity.


## Part I: Copper Versus Iron

#### **Materials**

- iron nail (not galvanized)
- copper strips (~3 in. long)
- 2 test tubes

## **Predictions and Procedure**

I. Examine the drawing of the two test tubes. Do you expect reactions to occur in both test tubes? Why or why not?



■ 1.0 M copper (II) sulfate, 10 mL

• 1.0 M iron (II) sulfate, 10 mL

- 2. Label two test tubes 1 and 2. Set them up as shown in the drawing.
- 3. Set the test tubes aside and observe.

#### **Observations and Analysis**

- I. What did you observe in test tube 1? What do you suppose happened?
- 2. What happened in test tube 2? What evidence is there?
- **3.** Write the balanced chemical equation for each reaction that occurred.
- **4.** Write the net ionic equation for each reaction in Question 3. What was oxidized and what was reduced?
- 5. What ions are present in each test tube?

6. Which substance is more easily oxidized, copper or iron? Explain.

# Part 2: Magnesium Versus Copper Versus Zinc

### Materials

- magnesium, zinc, and copper strips
- well plate with at least six wells
- tweezers (for handling metal foil)

#### **Procedure and Observations**

Use your well plate to test the combination of each metal with each solution. Use tiny amounts. Fill in the data table with R or NR (for reaction or no reaction).

#### Analysis

I. Why was it not necessary to pair each metal with its metal nitrate?

 1.0 M zinc nitrate, 1.0 M copper (II) nitrate, and 1.0 M magnesium nitrate in dropper bottles

|              | Mg | Cu | Zn |
|--------------|----|----|----|
| $Zn(NO_3)_2$ |    |    |    |
| $Cu(NO_3)_2$ |    |    |    |
| $Mg(NO_3)_2$ |    |    |    |

- **2.** How could you tell when a substance reacted? What did you observe?
- **3.** Write balanced chemical equations and net ionic equations for all the reactions you observed.

- **4.** Based on your experiment, place the metals in order of their ability to lose electrons easily (to be oxidized). Rank them from most active to least active.
- **5. Making Sense** How can you tell when one metal is oxidized more easily than another metal?